

Hale School

Mathematics Specialist

Test 5 --- Term 3 2017

Applications of Differentiation and Modelling Motion

Name: SAL OOSHANS

/ 42

Instructions:

- Calculators are allowed
- External notes are not allowed
- Duration of test: 45 minutes
- Show your working clearly
- Use the method specified (if any) in the question to show your working (Otherwise, no marks awarded)
- This test contributes to 7% of the year (school) mark

Question 1 (4 marks)

Given the equation, $\sqrt{xy} = \ln(\sin y + 2)$ determine $\frac{dy}{dx}$.

$$\frac{x \frac{dy}{dx} + y}{2 \sqrt{2 \sqrt{2 \sqrt{y}}}} = \frac{(\cos y) \frac{dy}{dx}}{\sin y + 2}$$

V diff vary wordly V dift In(snytz)
correctly.

/ Expands

$$\left(x \frac{dy}{dx} + y\right)\left(s_{i}uy + 2\right) = 2(\delta)y \int xy \frac{dy}{dx}$$

$$\frac{dy}{dx}\left(x(siy+2) + y(siy+2) = \frac{2(osy \int xy dx}{dx}\right) + \frac{y(siy+2)}{2(osy \int xy dx}$$

$$\frac{dy}{dx} = \frac{y(siy+2)}{2(osy \int xy dx} + \frac{y(siy+2)}{2(osy \int xy dx}\right) + \frac{y(siy+2)}{2(osy \int xy dx}$$

Question 2 (5 marks)

Find the general solution to the following differential equations:

(a)
$$\frac{dy}{dx} = \cos^2 y$$
 (2 marks)

$$\int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$= \chi + C$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dy = \int 1 dx$$

$$\int \int \frac{1}{\cos^2 y} dx$$

$$\int \int \int \frac{1}{\cos^2 y} dx$$

$$\int \int \frac{1}{\cos^2 y} dx$$

(b)
$$(x^2-1)^2 \frac{dy}{dx} = \frac{2x}{3y}$$
 (3 marks)

$$\int 3y \, dy = \int \frac{2\pi}{(\pi^2 - 1)^2} \, dx$$

$$\int 3y \, dy = -\frac{1}{(\pi^2 - 1)} + c.$$

$$\int 3y^2 = -\frac{1}{(\pi^2 - 1)} + c.$$

$$\int 1 + c.$$

Question 3 (3 marks)

The differential equation for a curve passing through the point (1, -1) is given by $\frac{dy}{dx} = xy - x^2$. Use the incremental formula $\delta y = \frac{dy}{dx} \times \delta x$, with $\delta x = 0.2$, to calculate an estimate for the y-coordinate of the curve when x = 1.4.

/ Increases re value by 0.2.

I dus incremulal formula to determine y,

$$\begin{array}{lll}
 & \lambda & \lambda_{12} & \lambda_{14} & \lambda_{15} & \lambda_{15} \\
 & & \lambda_{12} & \lambda_{14} & \lambda_{15} & \lambda_{15} \\
 & & \lambda_{15} & \lambda_{15} & \lambda_{15} \\
 & \lambda_{15} & \lambda_{15} & \lambda_{15} \\
 & \lambda_{15} & \lambda_{15} & \lambda_{15} \\
 & \lambda_{$$

/ use incremtal forma

Question 4 (7 marks)

An object undergoing SHM is defined by the differential equation $\frac{dv}{dt} = -n^2x$.

(a) Given $\frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt}$, use integration techniques to show that $v^2 = n^2(A^2 - x^2)$ where A is the amplitude of the motion. (4 marks)

$$\frac{dv}{dx} \times \frac{dx}{dt} = -n^{2} \times \frac{dx}{dt}$$

$$V \frac{dv}{dt} = -n^{2} \times \frac{dx}{dt}$$

$$\int v dv = \int -n^{2} x dt$$

$$V \frac{dx}{dt} = -n^{2} \times \frac{dx}{dt}$$

$$V \frac{dx}{dt} =$$

 $y^2 = -n^2 x^2 + n^2 A^2$ $y^2 = n^2 (A^2 - x^2)$

(b) If x = 4 m when v = -18 m/s and x = -3 m when v = 24 m/s, find the period and amplitude of the motion. (3 marks)

$$(-18)^{2} = n^{2} (A^{2} - 4^{2}) \dots (D)$$

$$(24)^{2} = n^{2} (A^{2} - (-3)^{2}) \dots (D)$$

$$Solvey Suttaneonsly - 1 - 6, A = 5 m$$

$$T = \frac{T}{3} \text{ secs.}$$

$$I = \frac{T}{3} \text{ secs.}$$

Question 5 (8 marks)

A rotating radar gun, at A, for measuring the speed of cars is positioned on a straight section of Great Eastern Highway. The radar gun is set up 7 metres from P, the nearest point on the side of the road, as shown in the diagram. $\angle APC = \frac{\pi}{2}$ and $\angle PAC = \theta^r$.

The gun is tracking the car C automatically. It is rotating at 0.358 radians per second at the instant the car is 24 m from P.

(a) Show that the car is exceeding the speed limit of 110 km/hr. (5 marks)

(b) The motorist wants to challenge the fine imposed. After viewing photographic evidence, he suspects that the distance AP was greater than 7 metres. What distance would AP need to be to ensure that the motorist has not exceeded the speed limit.
(3 marks)

detarnous

det

coholidos

egralin

$$\frac{dx}{dt} = \frac{110}{3.6} = 30.5 \text{ m/s}$$

$$\frac{dx}{at} = \frac{y}{\cos^2 \theta} \frac{d\theta}{dt}$$

$$30.5 = \frac{y}{\sqrt{24.5}} = 0.378$$

Question 6 (7 marks)

The diagram below shows the slope field of a differential equation $\frac{dy}{dx} = f(x, y)$

Determine the general differential equation that would yield this slope field. (a)

(3 marks)

$$\frac{dh}{dx} = 2a(x-1)$$

I stated solution as a differential equation

I recognises d.e. as linear

I low free x= 2 as T.P.

(b) On the slope field given above, draw in a curve representing the particular solution with initial condition (0,-2). (2 marks)

$$\sqrt{T.P.} \sim \left(\frac{1}{2}, -2.25\right)$$
 $\sqrt{\pi-i} \rightarrow \left(\frac{-1.4}{2\cdot1.0}\right)$

(c) Determine the equation for the particular solution if dy/dx=-1 at the point (0,-2). (2 marks)

$$-| = 2a(0-\frac{1}{2})$$

V determnes a

$$y = x^2 - x + c$$
 $c = -2$
 $y = x^2 - x - 2$ $corped p-s$.

Question 7 (8 marks)

(a) Show that if $P = \frac{a}{b + ke^{-at}}$, where a, b and k are positive constants, then

$$\frac{dP}{dt} = aP - bP^{2}.$$

$$P = \frac{a}{b + ke^{-at}}$$

$$\frac{dI}{dt} = \frac{a}{(b + ke^{-at})^{2}} \times (ake^{-at})$$

$$= \frac{a}{(b + ke^{-at})} \times \frac{ake^{-at}}{(b + ke^{-at})}$$

$$= P \times (ake^{-at}) \times (ake^{-at})$$

$$= P \times (ake^{-at}) \times (ake^$$

Question 7 continued...

(b) In Dwellingup, it was initially discovered that 10 trees were infected with dieback disease. The resultant growth in the dieback disease is modelled by the equation $\frac{dP}{dt} = 0.1P - 0.000025P^2 \text{ , where } P \text{ is the number of infected trees } t \text{ months after the initial discovery of the disease.}$

Use your result from (a) to express P as a function of t. (2 marks)

(c) Calculate the number of months taken for the number of trees infected by dieback to reach 80% of its limiting value. (2 marks)

$$4 = 3200$$
 $3200 = \frac{0.1}{0.000025 + 0.009975=0.1+}$
 $4 = 73.75 - m$ onts / calculates most,